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COMMENT 

Spherically symmetric collapse and the naked singularity 
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Abstract. I t  is shown that spherically symmetric collapse of a dust cloud in some cases may 
lead to a naked singularity. 

It is well known that spherically symmetric gravitational collapse leads to a singularity 
of infinite density once the boundary of the system goes below the Schwarzschild 
radius ( r  = 2m). The Schwarzschild surface or the event horizon for the vacuum exterior 
metric has the property that future time-like or null trajectories pass through it only 
towards the interior region. In other words the system leads to a black hole. 

Yodzis et a1 (1973) have recently pointed out that under certain conditions even 
spherically symmetric collapse may lead to a naked singularity-the singularity which 
can be observed by an external Schwarzschild observer. Such a singularity was, however, 
noted much earlier by Banerjee (1967) in the case of inhomogeneous spherically 
symmetric collapse of a dust cloud. 

The line element and the solutions for such a system were given in a special case 
(Landau and Lifshitz 1962) as 

ds2 = dt2-r2(d02+sin20 db2)-e” dR2 (1) 

e” = ( r ’ )2  (2) 

where 

and 

(to(R)- t )  = 5 r 3 l 2 F -  l ” .  

F being an arbitrary function of the radial coordinate R alone. Also 

t2 = Fir  
and 

F‘ 
r’r2 

8 7 ~ ~  = ---. 

(3) 

p being the rest mass density. 
It was pointed out that the singularity g, = r’ = 0, where the radial separation locally 

vanishes although the circumferential distance still remains finite and density increases 
indefinitely, will appear before the collapse r + 0 noted by Landau and Lifshitz only 
when tb(R) is negative in the region under consideration. 
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Now one can proceed further to find also the conditions under which such a singu- 
larity would appear even before the boundary goes beyond the horizon. 

Let t = ts be the time when the singularity g, , = r‘ = 0 appears at the boundary ofthe 
dust cloud, t = th being the instant that the horizon crosses the surface. In view of (4) 
and ( 5 )  F and F‘ are everywhere finite within the system. From (2) to is a finite positive 
function of R for a collapse and tb is also finite throughout the system. Now from (3) at 
the boundary of the dust cloud ( R  = Rb) 

where F(R,) = 2m, m being the gravitational mass of the sphere as is seen from the con- 
ditions of fit at the boundary. Again from the equation (7) of Banerjee (1967) at R = Rb 

Now, in order that initially ( t  = 0) the boundary of the system has a radius greater than 
the Schwarzschild radius and also that the singularity appears at the boundary before it 
collapses below the horizon the following conditions are to be satisfied : 

(8) 0 < t ,  < t,. 

The inequality (8) is equivalent to 

It is clear from (9) that tb(Rb) has to be negative and the singularity in such a case is 
naked. 
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